

Plasma and Electroenergetic Physics

Date: 05 March 2013

John W. Luginsland
Program Officer
AFOSR/RTB
Air Force Research Laboratory

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Infor	regarding this burden estimate mation Operations and Reports	or any other aspect of the , 1215 Jefferson Davis	is collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 05 MAR 2013 2. REPORT TYPE		2. REPORT TYPE	3. DATES COVERED 00-00-2013 to 00-00-2013			
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER		
Plasma and Electro-Energetic Physics				5b. GRANT NUMBER		
				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
					8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release; distributi	on unlimited				
13. SUPPLEMENTARY NO Presented at the A	TES FOSR Spring Revie	w 2013, 4-8 March,	Arlington, VA.			
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	17. LIMITATION OF ABSTRACT	18. NUMBER	19a. NAME OF			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	OF PAGES 22	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Plasma and Electro-Energetic Physics

NAME: John Luginsland, Plasma and Electro-energetic Physics

BRIEF DESCRIPTION OF PORTFOLIO:

Explore scientific opportunities in plasmas and electro-energetic physics where <u>energy-dense</u> <u>objects</u> powered by electromagnetic energy can provide new vistas in high-power electronics, plasma-enabled chemistry, and fluid/turbulence dynamics arenas

Sub-area: High Power Microwave (HPM) sources, non-equilibrium plasmas, and pulsed power

"What's past is prologue..."

2008 Spring Review

BRIEF DESCRIPTION OF

PORTFOLIO:

To advance the state-ofthe-art in high power electronics for USAF applications in DEW, radar, EW, and communications.

Sub-area:

- HPM sources
- Pulsed power
- Cold plasma

2008 Portfolio

Plasma and Electro-energetic Physics

Often far from equilibrium

DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution

High Power Microwaves

- HPM and vacuum electronics has demonstrated Pf² (energy density) doubling every 26 month since 1930
 - MW-GW, ~30-40% efficient, 0.1-1 μ s
- Emission physics fundamental physics for input power (Joint RD/RX/EOARD/AFOSR)

Recirculating Magnetron (U-Michigan and AFRL/RD)

Conventional 12 vane magnetron

Conventional-polarity

20-vane RPM

 Larger cathode surface area provides higher current

- Larger anode area allows for faster heat dissipation
- RPM allows for nearly full electron beam recirculation
- Planar cavities are decoupled from the anodecathode and spacing
- Magnetic field volume (V) scales linearly with # cavities (N) instead of (N²) as with cylindrical magnetron

Phase Control

Amplifiers vs Oscillators A Grand Challenge

Fundamental challenge in mating high power (nonlinearity) and amplification (linearity)

MIT

DISTRIBUTION STATEMENT A - Unclassified, Unlimited Distribution

High Power MM for Transformation Optics

High Power VEDs, MTMs,

plasma diagnostics

VEDs, MTMs

Non-Equilibrium Air Plasma

Light from 3 μ s discharge

Novel Plasma Chemistry

Non-Equilibrium Plasma in Space

AFRL/RY Theory on LH and IAW

Density in linear stage

 $\Omega_i t = 10$

 $\Omega_{,t}=2800$ Distribution A: Authorized for public release

 $\Omega_{i}t = 2980$

 $\Omega_i t = 300$

DISTRIBUTION STATEMENT A – Unclassifi

Strongly Coupled Plasma

 $(\Gamma = 99 = PE/KE)$

Ultracold, neutral plasma

Strongly Coupled Plasma

$$Z_{i} = 25$$

 $m_{i} = 56m_{p}$
 $n_{e} = 10^{24} \text{ cm}^{-3}$
 $T = T_{i} = T_{e}$

Wigner-Seitz radius: $a = (3/4\pi n_i)^{1/3}$

Coupling Parameter: $\Gamma = Z^2 e^2 / akT$

Plasma typically defined by kinetic energy > ionization energy Strongly coupled plasma occurs when PE > KE

BRI with T. Curcic + STTR Transition

Atomic processes in PIC

Voss Sci/OSU

Energy Evolution (40 time step duration)

Voss Sci/OSU

An Aside: Transformative Computation

- 3 Recent Basic Research Initiatives (Curcic, Fahroo, JWL, Smith, Stargel)
 - Ultra-Scale and Fault-Resilient Algorithms: Mathematical Algorithms for Ultra-Parallel Computing
 - Transformational Computing via Co-Design of High-Performance Algorithms and Hardware
 - Transformational Computing in Aerospace Science and Engineering (Q. Algorithms for Physics)

Pulsed Power Science Challenges

Large Pulsed Capacitor Energy Densities

- Fundamental focus on transport of charge and energy through solid-state high-energy materials
- MURI on Magnetic-Energy Conversion with Sayir
- BRI on Metal-Dielectric Interfaces with Sayir
- Engineer materials to provide competing characteristics of
 - Energy density (ε)
 - Rapid discharge capability
 - Breakdown Dielectric strength (E)

Pulsed Power Successes

S. Heidger, STAR team 2

Zhang, UM

New Initiatives and Resources

Resources

AFOSR is the leading DOD 6.1 organization for nonequilibrium plasma physics, especially for HPM/vacuum electronics EM sources

fs to hrs; nm to 100s km; solid-state energy/charge transport to plasma to WDM

Collaborators/Teammates

- Active collaborations with AFRL, ONR, ARL, DTRA, DARPA, NSF, DOE, and Air U
- Joint project with DARPA in micro-plasmas
- Close interactions with 9 LRIR, 3 MURI, and 11 BRI (fundamental sciences finds a wide range of collaborations)

